Tuesday, 19 January 2016

Wormhole Wonders: Hunting Down Spacetime Shortcuts

Wormhole Wonders: Hunting Down Spacetime Shortcuts



// 

Science fiction literature is full of stories in which tunnels in space-time — known as wormholes — are used for time travel. How much fact lies within the fiction? The answer is, more than you might think. Scientists are looking at ways to use traversable wormholes (if they exist) to travel faster than the speed of light — and even to travel through time itself.
Dimensions are complicated. Wrapping your head around how many there are can give you a headache. Trace explains everything you should know about them.
"A traversable wormhole is a hyperspace tunnel, also called a throat, that connects together two remotely distant regions within our universe, or two different universes — if other universes exist — or two different periods in time, as in time travel, or different dimensions of space," physicist Eric Davis told Space.com by email.
Davis specializes in the field of space-time as a member of the Tau Zero Foundation, where he uses equations from Einstein's general theory of relativity to think about possible (or impossible) designs for traversable wormholes, warp drives and time machines.
Building a Wormhole
Wormholes were first proposed in 1916 by mathematician Ludwig Flamm, who was toying around with equations from Einstein's theory of general relativity that describe how gravity can curve space-time, which refers to the fabric of physical reality. While these tunnels through space-time are a fascinating theoretical possibility, according to physicist Kip Thorne, a professor emeritus at the California Institute of Technology, scientists have not yet come up with an agreed-upon way that wormholes could form in nature, and no wormholes have ever been detected.
Thorne and some of his colleagues also showed that even if a wormhole appeared, it would likely collapse before an object (or person) could pass through it. To keep the wormhole open long enough to traverse it would require some kind of scaffolding, but normal matter wouldn't stand up to the job — it would require an "exotic material."
"Dark energy is one form of naturally occurring exotic matter whose negative pressure produces the gravitationally repulsive force that pushes the space inside our universe outward, thus producing the inflationary expansion of the universe," Davis said.
Along with dark energy, scientists also know of an exotic material called dark matter, which is five times more prevalent in the universe than regular matter. To date, scientists have been unable to directly detect either dark matter or dark energy, so much about them is still unknown. Scientists can learn about these materials, though, by examining the effect they have on the space around them.
According to Ali Övgün of Eastern Mediterranean University in Cyprus, it's possible that wormholes could form where dark matter is present, and thus that they could exist in the outer regions of the Milky Way, where dark matter lies, as well as within other galaxies. Övgün is working to prove that wormholes could exist in regions dense with dark matter. He and his colleagues have run simulations that show that wormholes in dense regions of dark matter found in galactic halos would satisfy the physical requirements scientists think the tunnels require.
"But it is only mathematical proof," Övgün said. "I hope one day it will be possible to also find direct experimental evidence."
So, what happens to a person or instrument traveling through a wormhole?
"Nothing! The space-time geometry of traversable wormholes requires that there be no nasty, intolerable gravitational tidal forces acting upon the spacecraft or its passengers while they move through the wormhole tunnel," Davis said. "They go into the throat at their departure location near Earth and get shunted through the tunnel to emerge out the other side near the destination star."
Because these theoretical tunnels cut through space-time, they would allow travelers to achieve speeds that appear to an outside observer to be faster than light (FTL). However, from the travelers' points of view, they would never actually outpace the speed of light — it would just seem that way to outside observers because the travelers would be taking a route that's shorter than they would have taken through ordinary space.
efore scientists could use wormholes, they would first have to find them. To date, wormholes have not been discovered. However, if they exist, locating a tunnel through space-time may not be as difficult as it sounds.
"As it is visualized in the movie 'Interstellar,' in the future, there will be some experiments to observe indirectly," Övgün said.
Based on certain wormhole theories, he compared peering through a wormhole to Alice's glimpse through the looking glass, in Lewis Carroll's novel of the same name. The region of space at the far end of the tunnel should stand out from the area around the entrance thanks to distortions that would be similar to the reflection in curved mirrors. Another indication may be the way light is concentrated as it moves through the wormhole tunnel, much as the wind blows through a physical tunnel.
Davis refers to what is seen at the near end of a wormhole as a "rainbow caustic effect." Such effects could be seen from a distance.
"Astronomers were planning to use telescopes to hunt for these rainbow caustics as a sign of a naturally occurring, or even an alien-made, traversable wormhole," Davis said. "I never heard if that project got off the ground."
Traveling Through Time
As part of his study of wormholes, Thorne also proposed a thought experiment in which a wormhole could be used as a time machine. Thought experiments about time travel often run into paradoxes. Perhaps the most famous of these is the grandfather paradox: If an explorer went back in time and killed his or her grandfather, that person could not be born, and would never have gone back in time in the first place. This seems to suggest that backward time travel is impossible, but according to Davis, Thorne's work opened up a new avenue for scientists to explore.
"An entire cottage industry of theoretical physics was born after that, which led to the development of other space-time techniques that can produce causal, nonparadox time machines," Davis said.
But although using wormholes for time travel may appeal to fans of fiction (and those who'd like to change their past),  Davis said current theories show that to make a wormhole time machine, one or both ends of the tunnel would need to be accelerated to velocities approaching the speed of light.
"It would be extremely difficult to construct a wormhole time machine," Davis said. "It's relatively much simpler to use wormholes for FTL interstellar travel between the stars."
Other physicists have suggested that using a wormhole to travel through time would cause a massive buildup of energy that would destroy the tunnel just before it could be utilized as a time machine — a process known as quantum back reaction. Nonetheless, it is still fun to dream about the potential.
"Think of all the possibilities of what people could do and the discoveries they could make if they could travel through time," Davis said. "Their adventures would be very interesting, to say the least."

Search for gravitational waves through the electromagnetic Faraday rotation

Search for gravitational waves through the electromagnetic Faraday rotation


A method is given which renders indirect detection of strong gravitational waves possible. This is based on the reflection (collision) of a linearly polarized electromagnetic shock wave from (with) a cross polarized impulsive and shock gravitational waves in accordance with the general theory of relativity. This highly nonlinear process induces a detectable Faraday rotation in the polarization vector of the electromagnetic field.







Monday, 28 February 2011

Dark Matter: A Primer

Dark matter is one of the greatest unsolved mysteries in cosmology at the present time. About 80% of the universe's gravitating matter is non-luminous, and its nature and distribution are for the most part unknown. In this paper, we will outline the history, astrophysical evidence, candidates, and detection methods of dark matter, with the goal to give the reader an accessible but rigorous introduction to the puzzle of dark matter. This review targets advanced students and researchers new to the field of dark matter, and includes an extensive list of references for further study.
Comments:26 pages, 6 figures
Subjects:High Energy Physics - Phenomenology (hep-ph); Cosmology and Extragalactic Astrophysics (astro-ph.CO)
Journal reference:Adv.Astron.2011:968283,2011
DOI:10.1155/2011/968283
Cite as:arXiv:1006.2483v2 [hep-ph]

Sunday, 7 November 2010

Top 10: Weirdest cosmology theories

Cosmology is one of the most creative and bizarre areas of science. Explore some of the strangest ideas in this exclusive feature

1. Clashing branes

Could our universe be a membrane floating in higher dimensional space, repeatedly smashing into a neighbouring universe? According to an offshoot of string theory called braneworld, there are large extra dimensions of space, and while gravity can reach out into them, we are confined to our own "brane" universe with only three dimensions. Neil Turok of Cambridge University in the UK and Paul Steinhardt of Princeton University in New Jersey, US, have worked out how the big bang could have been sparked when our universe clashed violently with another. These clashes repeat, producing a new big bang every now and then - so if the cyclic universe model is right, the cosmos could be immortal.

2. Evolving universes

When matter is compressed to extreme densities at the centre of a black hole, it might bounce back and create a new baby universe. The laws of physics in the offspring might differ slightly, and at random, from the parent - so universes might evolve, suggests Lee Smolin of the Perimeter Institute in Waterloo, Canada. Universes that make a lot of black holes have a lot of children, so eventually they come to dominate the population of the multiverse. If we live in a typical universe, then it ought to have physical laws and constants that optimise the production of black holes. It is not yet known whether our universe fits the bill.

3. Superfluid space-time

One of the most outlandish new theories of cosmology is that space-time is actually a superfluid substance, flowing with zero friction. Then if the universe is rotating, superfluid spacetime would be scattered with vortices, according to physicists Pawel Mazur of the University of South Carolina and George Chapline at Lawrence Livermore lab in California - and those vortices might have seeded structures such as galaxies. Mazur suggests that our universe might have been born in a collapsing star, where the combination of stellar matter and superfluid space could spawn dark energy, the repulsive force that is accelerating the expansion of the universe.

4. Goldilocks universe

Why does the universe have properties that are "just right" to permit the emergence of life? Tinker with a few physical constants and we would end up with no stars, or no matter, or a universe that lasts only for the blink of an eye. One answer is the anthropic principle: the universe we see has to be hospitable, or we would not be here to observe it. Recently the idea has gained some strength, because the theory of inflation suggests that there may be an infinity of universes out there, and string theory hints that they might have an almost infinite range of different properties and physical laws. But many cosmologists dismiss the anthropic principle as being non-science, because it makes no testable predictions.

5. Gravity reaches out

Dark matter might not really be "stuff" - it could just be a misleading name for the odd behaviour of gravity. The theory called MOND (modified Newtonian dynamics), suggests that gravity does not fade away as quickly as current theories predict. This stronger gravity can fill the role of dark matter, holding together galaxies and clusters that would otherwise fly apart. A new formulation of MOND, consistent with relativity, has rekindled interest in the idea, although it may not fit the pattern of spots in the cosmic microwave background.

6. Cosmic ghost

Three mysteries of modern cosmology could be wrapped up in one ghostly presence. After making an adjustment to Einstein's general theory of relativity, a team of physicists found a strange substance popping out of their new theory, the "ghost condensate". It can produce repulsive gravity to drive cosmic inflation in the big bang, while later on it could generate the more sedate acceleration that is ascribed to dark energy. Moreover, if this slippery substance clumps together, it could form dark matter.

7. It's a small universe

The pattern of spots in the cosmic microwave background has a suspicious deficiency: there are surprisingly few big spots. One possible explanation is that the universe is small - so small that, back when the microwave background was being produced, it just could not hold those big blobs. If so, space would have to wrap around on itself somehow. Possibly the oddest suggestion is that the universe is funnel-shaped, with one narrow end and one flared end like the bell of a trumpet. The bent-back curvature of space in this model would also stretch out any smaller microwave spots from round blobs into the little ellipses that are indeed observed.

8. Fast light

Why do opposite sides of the universe look the same? It's a puzzle because the extremes of today's visible universe should never have been in touch. Even back in the early moments of the big bang, when these areas were much closer together, there wasn't enough time for light - or anything else - to travel from one to another. There was no time for temperature and density to get evened out; and yet they are even. One solution: light used to move much faster. But to make that work could mean a radical overhaul of Einstein's theory of relativity.

9. Sterile neutrinos

Dark matter might be made of the most elusive particles ever imagined - sterile neutrinos. They are hypothetical heavier cousins of ordinary neutrinos and would interact with other matter only through the force of gravity - making them essentially impossible to detect. But they might have the right properties to be "warm" dark matter, buzzing about at speeds of a few kilometres per second, forming the largish dark matter clumps mapped by recent observations. Sterile neutrinos could also help stars and black holes to form in the early universe, and give the kicks that send neutron stars speeding around our galaxy.

10. In the Matrix

Maybe our universe isn't real. Philosopher Nick Bostrom has claimed that we are probably living inside a computer simulation. Assuming it ever becomes possible to simulate consciousness, then presumably future civilisations would try it, probably many times over. Most perceived universes would be simulated ones - so chances are we are in one of them. In that case, perhaps all those cosmological oddities such as dark matter and dark energy are simply patches, stuck on to cover up early inconsistencies in our simulation.

Saturday, 6 November 2010

Gravitation and Cosmology

Cosmologists study the universe as a whole: its birth, growth, shape, size and eventual fate. Get started with our beginner's guide.
Gravitation and Cosmology are very essential topics of physics....